Incomplete Block Designs
One treatment factor

Multiple treatment factors

Experimental units

CRD

Block Designs

RCB

(one block f. two (more))

RCB with factorial treatment structure, ...

split-plot, split-plot designs, different models on whole- and subplots, ...

factorial treatment structure (fixed effects), two-way ANOVA (or more factors), concept of interaction, 2^k-designs, ...

random effects, variance components, ...

fixed effects, global test, contrasts, ...

inhomogeneous

homogeneous

Similar to Lawson (2015)
Incomplete Block Designs

- Up to now we only considered **complete** block designs.
- This means we would see **all** treatments in **each** block.
- In some situations this is **not** possible because
 - (physical) block size is too small
 - too expensive
 - not advisable (think of rater having to rate 7 or more champagne brands)
- Remember the eye-drop example? What if we wanted to test **3** different eye-drop types?
- It is still a good idea to **block** on subjects, but obviously it is **not** possible to have **complete** blocks in this example!
Example: Eye-Drops (Oehlert, 2010)

- Suppose we have 3 subjects getting the following treatments \((A, B, C) \). This is an **incomplete** block design.

<table>
<thead>
<tr>
<th>Subject 1</th>
<th>Subject 2</th>
<th>Subject 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>(B)</td>
<td>(C)</td>
<td>(C)</td>
</tr>
</tbody>
</table>

- If we want to estimate the difference between \(A \) and \(B \) we can use
 - Subject 1: the estimate has variance \(2\sigma^2 \).
 - Combine subject 2 and subject 3:

\[
A - B = (A - C) - (B - C)
\]

This difference of differences has variance \(2\sigma^2 + 2\sigma^2 = 4\sigma^2 \).

- In a **complete** block design we could estimate the difference in **each** block with the **same precision**.
Incomplete Block Designs

- We have to be careful on what pairs of treatments we put in the same block.

- We call a design disconnected if we can build two groups of treatments such that it never happens that we see members of both groups in the same block.

- Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

In a disconnected design, it is not possible to estimate all treatment differences!

- If the design is not disconnected, we call it connected.
Balanced Incomplete Block Designs (BIBDs)

- We call an incomplete block design balanced (BIBD) if all pairs of treatments occur together in the same block equally often (we denote this number by λ).

- What is the benefit of the “balancedness” property?

- The precision (variance) of the estimated treatment differences $\alpha_i - \alpha_j$ is the same no matter what combination of i and j we are considering.

- This means that we can estimate all treatment differences with the same accuracy.

- Let us first give an overview of the different numbers involved in such a problem.
Balanced Incomplete Block Designs (BIBDs)

- We use the following notation:
 - g: number of treatments
 - b: number of blocks
 - k: number of units per block with $k < g$
 - r: number of replicates per treatment
 - N: total number of units

- In the eye-drop example we had
 - $g = 3$ treatments (the different eye-drops: A, B, C)
 - $b = 3$ blocks (the 3 subjects)
 - $k = 2$ units per block (the 2 eyes per subject)
 - $r = 2$ replicates per treatment
 - $N = 6$

- Of course it must hold that $N = b \cdot k = g \cdot r$.
Unreduced BIBDs

- We can always find a BIBD for every setting of $k < g$.
- How? Simply use all possible combinations.
- The number of combinations is $\binom{g}{k} (= \text{binomial coefficient: } \frac{g!}{k!(g-k)!})$.
- E.g., for $g = 7$ and $k = 3$ we have $\binom{7}{3} = 35$.
- In R, have a look at function `choose` and `combn`.
- We call such a design an **unreduced** balanced incomplete block design.
- In practice it is often not possible to have so many blocks.
- The big question: what number of blocks are “doable”?
Balanced Incomplete Block Designs (BIBDs)

- A treatment occurs in \(r \) blocks.
- There are \(k - 1 \) other “available units” in each of these blocks which makes a total of \(r \cdot (k - 1) \) “available units”.
- The remaining \(g - 1 \) treatments must be divided evenly among them, otherwise the design is not balanced.
- Hence \(\frac{r \cdot (k-1)}{g-1} \) must be a whole number \((= \lambda) \) for a BIBD to exist.
- Condition is only necessary, not sufficient.
- This means: even if condition is fulfilled, it might be the case that you cannot find a BIBD!
Example: Champagne (Roth, 2013)

- 14 raters, 7 champagne types, every rater rated 3 of them.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- This is a BIBD. We see every treatment pair combination exactly twice in the same block.

- In more detail we have
 - $g = 7$ treatments
 - $b = 14$ blocks
 - $k = 3$ units per block
 - $r = 6$ replicates per treatment

- Hence, $\lambda = \frac{r \cdot (k-1)}{g-1} = \frac{6 \cdot 2}{6} = 2$.
BIBD: Finding a Design

- First make sure that necessary condition is fulfilled.
- Old way: check Appendix C.2 of the book with a list of BIBDs.
- Use R, e.g. function `find.BIB` in package `crossdes` or function `ibd` in package `ibd` (among many others).
- See R-File for an example.
(B)IBD: Randomization

- How can we randomize a given (B)IBD?
- Randomize blocks to the groups of treatment letters.
- Within each block: randomize assignment of treatment letters to physical units.
- Randomize assignment of treatment letters to actual treatments.
- How can we analyze an incomplete block design?
(B)IBD: Analysis

- The **model** for a (balanced) incomplete block design is the standard model, i.e.
 \[Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij} \]

- However, as we don’t observe all treatment × block combinations, the “usual” estimates are **not** working and we need the computer to find the least squares estimates (which is no problem).

- We are using type III sum of squares to test treatment effects **adjusted for block effects**.

- In other words: we analyze treatment while we **control for the block effects**.
Intra- and Interblock Analysis

- This is a so called **intrablock analysis** of the (B)IBD.
- It is also possible to recover some information by comparing different blocks.
- This would be called an **interblock analysis**.
- Information from both approaches can be suitably combined.
- This looks complicated in the book, but it is nothing else than the analysis when treating the block factor as **random**.
- We will **not** discuss this any further here.
Example: Dish Detergent (Oehlert, 2010, Ex. 14.2)

- **Want to compare** **9 different dishwashing solutions.**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base detergent</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>control</td>
</tr>
<tr>
<td>Additive</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>control</td>
</tr>
</tbody>
</table>

- **Available resources**
 - 3 washing basins
 - 1 operator for each basin (= 3 operators)

- The 3 operators wash at the same speed during each session, but **speed might vary from session to session.**

- **Response:** **Number of plates washed** when foam disappears.
If we have 12 sessions, we can find a BIBD.

The design was as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>H</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>E</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>J</td>
<td>G</td>
<td>H</td>
<td>J</td>
<td>J</td>
<td>G</td>
<td>H</td>
<td>H</td>
<td>J</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Analysis in R

```r
> fit <- aov(dishes ~ session + detergent, data = dish)
> drop1(fit, test = "F")

Single term deletions

Model:
dishes ~ session + detergent

Df Sum of Sq    RSS    AIC  F value    Pr(>F)
<none>          13.19 3.841
session 11     10.06 23.25  2.260  1.1103    0.4127
detergent 8     1086.81 1100.00 147.104 164.8539 6.809e-14 ***
```
Example: Dish Detergent (Oehlert, 2010, Ex. 14.2)

If we call summary.lm **we get**

```r
> summary.lm(fit)
```

Call:
```r
aov(formula = dishes ~ session + detergent, data = dish)
```

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.1482</td>
<td>-0.5556</td>
<td>0.1111</td>
<td>0.4630</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|---------|
| Intercept | 18.7037 | 0.6766 | 27.643 | 6.21e-15*** |
| session10 | 1.4074 | 0.8194 | 1.718 | 0.105170 |
| session11 | 0.6296 | 0.8194 | 0.768 | 0.453458 |
| session12 | 0.8519 | 0.8194 | 1.040 | 0.313998 |
| session2 | 1.1111 | 0.8559 | 1.298 | 0.212612 |
| session3 | 0.4444 | 0.8559 | 0.519 | 0.610667 |
| session4 | 0.9259 | 0.8194 | 1.130 | 0.275148 |
| session5 | 1.1481 | 0.8194 | 1.401 | 0.180266 |
| session6 | 2.1481 | 0.8194 | 2.622 | 0.018513* |
| session7 | 1.8319 | 0.8194 | 2.260 | 0.038127* |
| session8 | 0.6296 | 0.8194 | 0.768 | 0.453458 |
| session9 | 1.0474 | 0.8194 | 1.718 | 0.005370* |
| detergent2 | -2.5556 | 0.7412 | -3.448 | 0.003309** |
| detergent3 | -6.5556 | 0.7412 | -8.844 | 1.47e-07*** |
| detergent4 | -13.2222 | 0.7412 | -17.839 | 5.54e-12*** |
| detergent5 | 5.5556 | 0.7412 | 7.495 | 1.28e-06*** |
| detergent6 | 3.2222 | 0.7412 | 4.347 | 0.000499*** |
| detergent7 | 1.3333 | 0.7412 | 1.799 | 0.090928. |
| detergent8 | -0.5556 | 0.7412 | -0.750 | 0.484416 |
| detergent9 | 9.7778 | 0.7412 | 13.192 | 5.16e-10*** |

Here we used contr.treatment. The coefficients are therefore comparisons to the reference treatment (= detergent 1). Note that the standard error is the same for all effects which is a property of the balanced design.
Partially Balanced Incomplete Block Designs

- It might very well be the case that we are in a situation where there is no BIBD available.
- In that case we could use a partially balanced incomplete block design, where some treatment pairs occur together more often than other pairs.
- Example (Kuehl, 2000, Display 9.3)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

- (1,4), (2,5), (3,6) are observed twice, remaining pairs only once together in the same block.
- The analysis is the same as for a BIBD!
Row-Column Incomplete Block Designs

- As we have seen with RCBs we are sometimes facing the situation where we have more than one block factor (remember Latin Squares?).

- Latin Squares are often impractical due to their very strict constraint on the design.

- A row-column incomplete block design is a design where we block on rows and columns and one or both of them are incomplete blocks.
Example: Car Tires (Kuehl, 2000)

- Suppose we want to evaluate 7 treatments instead of 4.
- Assume that we have 7 cars and the following design

<table>
<thead>
<tr>
<th>Tire position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- The tire positions are **complete blocks**, the columns form a **BIBD**. This is a so-called **row-orthogonal design**.
Youden Squares

- A Youden Square is rectangular (!) such that
 - columns (rows) form a BIBD
 - rows (columns): every treatment appears equally often

- Hence, columns form a BIBD, rows an RCB.

- The model is as before:
 \[
 Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}
 \]

- Analysis in R “as usual”, just make sure to use `drop1` to ensure that the correct sum of squares is being used.
Example: Lithium in Blood (Oehlert, 2010, Ex. 14.5)

- Study was performed to measure blood concentration of lithium 12 hours after administering lithium carbonate using
 - A: 300mg capsule
 - B: 250mg capsule
 - C: 450mg time delay capsule
 - D: 300mg solution

- 12 subjects, each will be measured and treated twice, 1 week apart

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

- Response: serum lithium level.
Example: Lithium in Blood (Oehlert, 2010, Ex. 14.5)

- We block on both rows (weeks) and columns (subjects).
- Every treatment appears 3 times in each week.
- The columns form a BIBD.

Analysis in R

```r
> fit <- aov(hour.12 ~ subject + period + treatment, data = lith)
> dropl(fit, test = "F")
```

Model:

<table>
<thead>
<tr>
<th>term</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td><none></td>
<td></td>
<td>0.016203</td>
<td>143.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subject</td>
<td>11</td>
<td>0.029946</td>
<td>0.046149</td>
<td>-140.09</td>
<td>1.3442</td>
<td>0.3449</td>
</tr>
<tr>
<td>period</td>
<td>1</td>
<td>0.031974</td>
<td>0.048177</td>
<td>-119.06</td>
<td>15.7871</td>
<td>0.0041 **</td>
</tr>
<tr>
<td>treatment</td>
<td>3</td>
<td>0.005603</td>
<td>0.021806</td>
<td>-142.09</td>
<td>0.9222</td>
<td>0.4728</td>
</tr>
</tbody>
</table>
```

- Unfortunately we cannot detect any treatment effect here.
Summary

- Balancedness properties etc. ensure that we are performing the experiment as efficient as possible.
- If a design is not balanced anymore, we lose efficiency but we can typically still analyze the data.
- Exceptions are (e.g.) cases where a disconnected design has been used and the focus was on comparing all treatments.
- Package overview: https://cran.r-project.org/web/views/ExperimentalDesign.html