Computational Statistics

26.04: Multiple testing
Multiple testing correction

• See https://xkcd.com/882/

• With many tests at significance level α, one is bound to find some significant results, even if all null hypotheses are true (since we allow a false positive probability of α for each test)

• Possible approaches include controlling:
 • Family wise error rate (FWER) (e.g., Bonferroni)
 • False discovery rate (FDR) (e.g., Benjamini Hochberg)
Terminology and notation

For one test:

<table>
<thead>
<tr>
<th></th>
<th>H_0 is true</th>
<th>H_a is true</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is not rejected</td>
<td>True negative</td>
<td>False negative or Type II error</td>
</tr>
<tr>
<td>H_0 is rejected</td>
<td>False positive or Type I error</td>
<td>True positive or true discovery</td>
</tr>
</tbody>
</table>

$P(\text{type I error}) = P(\text{reject } H_0 | H_0 \text{ is true}) = \alpha \quad (\text{or } \leq \alpha)$

$P(\text{type II error}) = P(\text{not reject } H_0 | H_a \text{ is true}) = \beta$

Power = $1 - \beta$
Terminology and notation

<table>
<thead>
<tr>
<th></th>
<th>H_0 is true</th>
<th>H_α is true</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is not rejected</td>
<td>U</td>
<td>T</td>
<td>$m - R$</td>
</tr>
<tr>
<td>H_0 is rejected</td>
<td>V</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Total</td>
<td>m_0</td>
<td>$m - m_0$</td>
<td>m</td>
</tr>
</tbody>
</table>

- **Note**: m is a fixed known number, m_0 is a fixed but unknown number. The case when $m = m_0$ is also called the “complete null” or “global null”. All capital letters represent random variables. Only R is observable.

- $Q = V/R$ is the false discovery proportion (FDP)
 (Convention: $V/R = 0$ if $V = R = 0$)

- $E(Q)$ is the false discovery rate (FDR)

- $P(V \geq 1)$ is the family wise error rate (FWER)
Relationships

• One can show that (see board):
 • \(FWER \geq FDR \)
 • \(FWER = FDR \) under the global null
 • \(\alpha \leq FWER \leq \alpha m \)

• The last inequality leads to the Bonferroni correction:
 Conducting each test at significance level \(\alpha/m \) controls the FWER at \(\alpha \).

• Under the global null and if all tests are independent and exactly at level \(\alpha \), then
 \(FWER = 1 - (1 - \alpha)^m \). A first order Taylor expansion around \(\alpha = 0 \) shows that
 this is approximately equal to \(\alpha m \). Hence, in this situation the Bonferroni
 correction is sensible.

• In case of dependent tests, the Bonferroni correction can be much too
 strict/conservative.

• See board.
Westfall Young permutation procedure

- Data matrix of size \(n \times (m + 1) \)
 - Column for y-variable contains 1’s and 0’s to indicate treatment and control
 - Other columns are the x-variables \(X_1, \ldots, X_m \)
- Note: if \(m = m_0 \) (i.e., under the global null), one can permute the y-values
- Procedure:
 - Repeat many times: permute the y-column and do a two sample test (e.g., Wilcoxon), for each \(x_j \)-column (comparing \(x_j[y == 1] \) and \(x_j[y == 0] \)). Let \(p_j, j = 1, \ldots, m \) be the corresponding p-values. Store \(\min(p_1, \ldots, p_m) \).
 - Set \(\delta = \) empirical \(\alpha \)-quantile of the permutation distribution of \(\min(p_1, \ldots, p_m) \).
 - Reject any null hypothesis where the two-sample test on the original data has p-value \(\leq \delta \).
- This procedure provides weak control of the FWER (i.e., under the global null). One can also show strong control (under any configuration of null and alternative hypotheses) under some assumptions.