Series 10

1. For a dataset \((x_i, y_i) (i = 1, \ldots, n)\) with \(n\) observations and predictors \(x_i \in \mathbb{R}^p\) the leave-one-out cross validation (LOOCV) mean-squared error is:

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)})^2,
\]

where \(\hat{y}_i^{(-i)}\) denotes the fitted value in \(x_i\) of the model trained on the whole dataset but the \(i^{th}\) observation. Computing the leave-one-out cross validation error could be computationally intensive due to the constraint of fitting \(n\) different models. In some specific cases, it happens that a closed formula for LOOCV mean-squared error exists requiring no additional fit than the global one (on the whole dataset).

a) Consider the general case of a linear fitting operator \(m(\cdot)\) given by, i.e.

\[
(\hat{m}(x_1), \ldots, \hat{m}(x_n))^T = Sy,
\]

where \(S\) is a matrix of size \(n \times n\) with the property that it preserves constants, i.e.

\[
S(1,1,\ldots,1)^T = (1,1,\ldots,1)^T.
\]

We assume that we can obtain the prediction \(m^{(-i)}(x_i)\) on the \(i^{th}\) observation of the smoother fitted on the whole dataset but the \(i^{th}\) observation by the formula

\[
m^{(-i)}(x_i) = \frac{(Sy_i) - S_{ii}y_i}{1 - S_{ii}}.
\]

(1)

Show that the following formula holds

\[
\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{m}^{(-i)}(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{m}(x_i) \right)^2.
\]

Hint:

- start from Equation (1).

b) Linear regression is a first sub-case where we can get a formula for the LOOCV mean-squared error. We denote the hat matrix by

\[
H = X(X^TX)^{-1}X^T.
\]

where \(X\) is the \(n \times p\) design matrix. Show that the formula in Equation (1) is valid for linear regression.

HINTS:

- consider the dataset where we replace the \(i^{th}\) observation \((x_i, y_i)\) by the observation \((x_i, \hat{y}_i^{(-i)})\) with \(\hat{y}_i^{(-i)}\) being the fitted values at \(x_i\) from the model trained without the \(i^{th}\) observation \((x_i, y_i)\).
- justify why \(\hat{y}_i^{(-i)}\) coincides with \(\hat{z}_i\) where \(\hat{z} = Hz\) and \(z\) is a vector of responses defined as \(z_j = y_j\) if \(j \neq i\) and \(z_i = \hat{y}_i^{(-i)}\) (the two fitted values coincide).
- deduce Equation (1) for linear regression from the last observation.

2. In this exercise we will get a grasp of the curse of dimensionality. Let \(X \in \mathbb{R}^n\) be uniformly distributed on the unit ball in \(\mathbb{R}^n\) (with respect to the \(L^2\) norm). Suppose we have \(n\) independent and identically (i.i.d.) copies of \(X: X_1, \ldots, X_n\). Let \(X_{(1)}\) denote the one that is closest to the origin (again in terms of the \(L^2\) norm), and let \(|X_{(1)}|\) be its \(L^2\) distance to the origin.
a) Determine $P(|X_{(1)}|^2 > t)$ as a function of n and t (thinking first in one dimension could help).

Hint: The volume in \mathbb{R}^n of a L^2 ball with radius R is given by

$$V_n(R) = C(n)R^n,$$

where $C(n)$ is a constant depending on n.

b) Determine the median of $|X_{(1)}|^2$.

c) Compute the median of $|X_{(1)}|^2$ for $n = 500$. What does this tell you about the distribution of points within the unit ball?

3. In this exercise, we want to compare the impact of the curse of dimensionality on the expected test error for three different models: k-nearest neighbors (KNN), multiple linear regression and generalized additive models with splines (GAM) in the specific case when the underlying signal is sparse (only one predictor has an effect on the response) and non-linear.

a) Construct train and test sets in which the response is non-linear in the first predictor with help of the following code. Please also install or load the R libraries below that will be needed for the exercise:

```r
> # libraries needed
> # for GAMs
> library(gam)
> # for KNN regression
> library(FNN)
> # for repro
> set.seed(1)
> # predictors in training set
> xtrain <- matrix(rnorm(20*100),ncol=20, nrow = 100)
> # response in training set
> ytrain <- sin(2*xtrain[,1]) + 0.3*rnorm(100)
> # training set
> dtrain <- data.frame(xtrain,y = ytrain)
> # predictors in test set
> xtest <- matrix(rnorm(20*100),ncol=20, nrow = 100)
> # response in test set
> ytest <- sin(2*xtest[,1]) + 0.3*rnorm(100)
> # test set
> dtest <- data.frame(xtest,y = ytest)
```

b) Fit on the training set each of the three models (KNN, multiple linear regression and GAM with splines) with only the first predictor. For the GAM you will use a spline with degree of freedom 4 (function `s(..., 4)` in the formula) and for the KNN regression you will vary the parameter k (number of nearest neighbors) between 1 and 10 (fit 10 KNN). Record the test mean-squared error for each approach and discuss you results.

c) Do again the same procedure as in the last point, but now add incrementally additional predictors in the fit that are not associated with the response (columns 2 to 20 in the dataset). Record the test mean-squared error for each possible number m of additional predictor between 1 and 19 (all predictors used in the fit) for each 12 modelling approached (GAM with splines of degree 4 for each predictor, multiple linear regression and 10 KNN fitted with varying parameter k between 1 and 10).

d) Plot the test mean-squared error curves as a function of $1/k$ (for GAM and multiple linear regression just plot a straight line) and discuss the behaviour of the test error when m vary between 1 and 19.

4. The backfitting algorithm is the simple iterative procedure used to fit generalized additive models. In this exercise we will get a grasp of this algorithm by applying it to multiple linear regression (which is a specific sub-case of GAM). Let us consider multiple linear regression with p covariates.
\[y = \beta_0 + \sum_{i=j}^{P} \beta_j x_j + \epsilon. \]

In this case the algorithm boils down to:

1. center the response by first removing its mean, i.e. define \(\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i \).
2. initialize a vector of regression coefficients \(\hat{\beta} \) with 0 values.
3. for \(N \) iterations, iteratively cycle and refit \(\hat{\beta}_i \) with the model

\[y - \hat{\mu} - \sum_{j:j \neq k}^{p} \hat{\beta}_j x_j = \beta_0 + \beta_k x_k + \epsilon, \]

for all \(j = 1, \ldots, p \).
4. output \(\hat{\beta} \) as an estimate of the regression coefficients.

a) Implement the backfitting algorithm for the following two synthetic datasets (given in code below) and compare the resulting estimated coefficients with the multiple linear regression estimates. Try different orders when you cycle through the variables also.

```r
> # for reproducibility
> set.seed(1)
> # first dataset
> x1 <- rnorm(100)
> x2 <- rnorm(100)
> x3 <- rnorm(100)
> x4 <- rnorm(100)
> y <- x1 + 2*x2 + 0.5*x3 -3*x4 + rnorm(100)
> # matrix of predictors
> x <- cbind(x1,x2,x3,x4)
> # second dataset
> x1_cor <- rnorm(100)
> x2_cor <- rnorm(100)
> x3_cor <- rnorm(100)
> x4_cor <- x1_cor + 0.4*rnorm(100)
> y_cor <- x1_cor + 2*x2_cor + 0.5*x3_cor -3*x4_cor + rnorm(100)
> # matrix of predictors
> x_cor <- cbind(x1_cor,x2_cor,x3_cor,x4_cor)
```

General Information:

- The question hours will take place in room HG G19.1 the 10.8.18 at 15:00.
- The exam review will take place in room HG G19.1 the 24.09.18 at 12:00.

Preliminary discussion: Friday, May 24.

Deadline: Thursday, May 28.